46 research outputs found

    Signatures of X-ray reverberation in the power spectra of AGN

    Full text link
    We compute fully relativistic disc response functions in the case of the "lamp-post" geometry using the full observed reflection spectrum for various X-ray source heights, disc inclination, and spin values of the central black hole. Since the observed PSD is equal to the product of the intrinsic power spectrum with the "transfer function" (i.e. the Fourier transform of the disc response function), we are able to predict the observed PSDs in the case of X-ray illumination of the inner disc. The observed PSD should show a prominent dip at high frequencies and an oscillatory behaviour, with a decreasing amplitude, at higher frequencies. The reverberation "echo" features should be more prominent in energy bands where the reflection component is more pronounced. The frequency of the dip is independent of energy, and it is mainly determined by the black hole mass and the X-ray source height. The amplitude of the dip increases with increasing black hole spin and inclination angle, as long as the height of the "lamp" is smaller than ~10 gravitational radii. The detection of the X-ray reverberation signals in the PSDs can provide further evidence for X-ray illumination of the inner disc in AGN. Our results are largely independent of the assumed geometry of the disc-corona system, as long as it does not change with time, and the disc response function is characterized by a sharp rise, a "plateau", and a decline at longer times. Irrespective of the geometry, the frequency of the main dip should decrease with increasing "mean time" of the response function, and the amplitude of the dip should increase with increasing reflection fraction.Comment: Astronomy and Astrophysics accepte

    A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    Full text link
    We present the results of a detailed study of the X-ray power spectra density (PSD) functions of twelve X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5-7 keV (iron line) and 0.5-1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3-10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3-5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high frequency slope.Comment: Accepted for publication in MNRAS. The paper is 15 pages long and contains 7 figures and 6 table

    Signatures of X-ray reverberation in the power spectra of AGN

    No full text
    Aims: we study the effects of X-ray reprocessing in the power spectra (PSDs) of active galactic nuclei (AGNs).Methods: we compute fully relativistic disc response functions in the case of lamp-post geometry using the full observed reflection spectrum for various X-ray source heights, disc inclination, and spin values of the central black hole. Since the observed PSD is equal to the product of the intrinsic power spectrum with the transfer function (i.e. the Fourier transform of the disc response function), we are able to predict the observed PSDs in the case of X-ray illumination of the inner disc.Results: the observed PSD should show a prominent dip at high frequencies and an oscillatory behaviour with a decreasing amplitude at higher frequencies. The reverberation echo features should be more prominent in energy bands where the reflection component is more pronounced. The frequency of the dip is independent of energy, and it is mainly determined by the black hole mass and the X-ray source height. The amplitude of the dip increases with increasing black hole spin and inclination angle, as long as the height of the lamp is smaller than ~10 gravitational radii.Conclusions: the detection of the X-ray reverberation signals in the PSDs can provide further evidence for X-ray illumination of the inner disc in AGN. Our results are largely independent of the assumed geometry of the disc-corona system, as long as it does not change with time, and the disc response function is characterized by a sharp rise, a plateau, and a decline at longer times. Irrespective of the geometry, the frequency of the main dip should decrease with increasing mean time of the response function, and the amplitude of the dip should increase with increasing reflection fractio

    Tutorials at PPSN 2016

    Get PDF
    PPSN 2016 hosts a total number of 16 tutorials covering a broad range of current research in evolutionary computation. The tutorials range from introductory to advanced and specialized but can all be attended without prior requirements. All PPSN attendees are cordially invited to take this opportunity to learn about ongoing research activities in our field

    A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems

    Get PDF
    The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a non-elitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In the original CMA-PAES, a solution is selected as a parent for the next population using an elitist adaptive grid archiving (AGA) scheme derived from the Pareto Archived Evolution Strategy (PAES). In contrast, a multi-tiered AGA scheme to populate the archive using an adaptive grid for each level of non-dominated solutions in the considered candidate population is proposed. The new selection scheme improves the performance of the CMA-PAES as shown using benchmark functions from the ZDT, CEC09, and DTLZ test suite in a comparison against the (μ+λ) μ λ Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES). In comparison with MO-CMA-ES, the experimental results show that the proposed algorithm offers up to a 69 % performance increase according to the Inverse Generational Distance (IGD) metric

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    A dynamic archive niching differential evolution algorithm for multimodal optimization

    No full text
    Highly multimodal landscapes with multiple local/global optima represent common characteristics in real-world applications. Many niching algorithms have been proposed in the literature which aim to search such landscapes in an attempt to locate as many global optima as possible. However, to locate and maintain a large number of global solutions, these algorithms are substantially influenced by their parameter values, such as a large population size. Here, we propose a new niching Differential Evolution algorithm that attempts to overcome the population size influence and produce good performance almost independently of its population size. To this end, we incorporate two mechanisms into the algorithm: a control parameter adaptation technique and an external dynamic archive along with a reinitialization mechanism. The first mechanism is designed to efficiently adapt the control parameters of the algorithm, whilst the second one is responsible for enabling the algorithm to investigate unexplored regions of the search space and simultaneously keep the best solutions found by the algorithm. The proposed approach is compared with two Differential Evolution variants on a recently proposed benchmark suite. Empirical results indicate that the proposed niching algorithm is competitive and very promising. It exhibits a robust and stable behavior, whilst the incorporation of the dynamic archive seems to tackle the population size influence effectively. Moreover, it alleviates the problem of having to finetune the population size parameter in a niching algorithm

    Hardware-friendly Higher-Order Neural Network Training using Distributed Evolutionary Algorithms

    No full text
    In this paper, we study the class of Higher-Order Neural Networks and especially the Pi-Sigma Networks. The performance of Pi-Sigma Networks is evaluated through several well known Neural Network Training benchmarks. In the experiments reported here, Distributed Evolutionary Algorithms are implemented for Pi-Sigma neural networks training. More specifically the distributed versions of the Differential Evolution and the Particle Swarm Optimization algorithms have been employed. To this end, each processor is assigned a subpopulation of potential solutions. The subpopulations are independently evolved in parallel and occasional migration is employed to allow cooperation between them. The proposed approach is applied to train Pi-Sigma Networks using threshold activation functions. Moreover, the weights and biases were confined to a narrow band of integers, constrained in the range [-32; 32]. Thus, the trained Pi-Sigma neural networks can be represented by using 6 bits. Such networks are better suited than the real weight ones for hardware implementation and to some extend are immune to low amplitude noise that possibly contaminates the training data. Experimental results suggest that the proposed training process is fast, stable and reliable and the distributed trained Pi-Sigma Networks exhibited good generalization capabilities. (C) 2009 Elsevier B.V. All rights reserved
    corecore